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SUMMARY 
A generalized finite volume method that can solve the Euler equations for the stator and rotor parts of stage 
flow in similar formulations is presented. The method consists of a new moving grid finite volume 
formulation applied to the rotor region and the existing fixed grid finite volume method used in the stator 
region, with the data transfer made by an interpolation procedure at the sliding surface in between. The 
accuracy of the method has been demonstrated on a simple cascade flow before the time-dependent 
compressor stage flow is fully investigated. The transonic stator-rotor flow interaction is elucidated within 
the inviscid and rotational flow limit. 
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INTRODUCTION 

Recently, considerable attention has been given to axial-type compressor and turbine cascade 
flow problems with stator-rotor interaction. Normally, axial-flow-type turbomachines include 
closely packed stages of blades, each stage consisting of alternating rotor and stator rows of 
blades. Work is done on the fluid agent by the action of the rotor blades, some of which is 
converted to pressure before the flow is redirected to the next rotors by the stator blades. 

It has been indicated' that the stator-rotor interaction has three distinct causes of unsteadi- 
ness. One is the viscous vortex shedding near the trailing edge of the stator blades. Another is the 
wake-rotor interaction in which the wakes from the stator blades are passed to the downstream 
rotor blades. The third is the potential stator-rotor interaction in which the pressure disturbance 
caused by the leading edge part of the rotor blades sweeps upstream all the way to the stator 
blades. Additional unsteadiness is possibly caused in this case if the flow is viscous, by affecting 
the vortex-shedding mechanism at or near the stator trailing edges. The present study is based on 
the formulation of the Euler equations and therefore can take non-viscous phenomena such as the 
inviscid wake-rotor interaction and the potential stator-rotor interaction into account. 

Sometimes turbomachinery is operated in a choked state under off-design conditions. Deliber- 
ate introduction of choked flow is also made to the inlet guide vanes, partly for the compression 
effect and partly for the blockage of upstream noise radiation from the fan or compressors.2 In the 
present study we consider the stator-rotor interaction under choked flow conditions, 

The existence of moving blades in the present problem causes a computational difficulty, which 
has been treated in the literature by two distinct approaches. One approach uses relative co- 
ordinates in the rotor r e g i ~ n , ~ . ~  introducing moving contact surfaces capable of supporting 
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jumps in the tangential velocity, total enthalpy, etc. In this context, Erdos et aL3 used the 
MacCormack scheme to solve the inviscid transonic fan stage problem, while Jorgenson and 
Chima4 solved viscous turbine flow using an explicit finite difference method. The other 
approach,'-' which is comparable to the one used in the present method, uses identical co- 
ordinates in both the stator and rotor regions, with the grid-moving effect accounted for in the 
rotor region. For example, Rai used the finite difference method'-7 to analyse the inviscid 
supersonic flow in a rotor-stator configuration as well as viscous turbine stage flows including 
three-dimensional effects. Oden et al.,' on the other hand, considered the inviscid supersonic 
stator-rotor interaction problem using the finite element method formulated with the adaptive 
grid. 

In the present study we have developed a time-accurate, efficient numerical technique based on 
the finite volume formulation. The Euler equations are solved for two-dimensional compressor 
stator-rotor stage flow until a fully periodic or quasi-steady state is established in the flow. The 
stator region is treated with the fixed grid finite volume formulation originated by Jameson et aE.? 
while the dynamic rotor region is treated by its modified version developed in the present study. 
The two regions are juxtaposed through a sliding surface across which data exchange is 
performed by an interpolation process. This modified formulation was first tested for accuracy on 
a simple isolated cascade flow before the interactive stage flow problem was fully investigated. 
The method turned out to be quite efficient in solving the compressible stage flow. 

NUMERICAL METHODS 

Finite volume formulation 

Cartesian co-ordinates (x, y)  are 
The unsteady two-dimensional Euler equations of conservation law form in rectangular 

aw af ag 
-+ -+-=0 ,  
at ax ay  

where 

P U  P pu2 + P 
.=[ f = [  puv 
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e = -  +- 
h = e + p / p  . 

(3) 

(4) 

Here p is the density, u and u are the Cartesian velocity components, e is the total internal energy 
per unit mass, p is the pressure, h is the total enthalpy and y is the specific heat ratio. 

The integral counterpart of equations (1) takes the form, for a fixed finite volume A and its 
boundary C, 
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If the control volume is in motion relative to the fixed co-ordinate system (see Figure l), then 
additional flux comes into play due to the moving boundaries" as in 

where 4 is the displacement velocity of the boundary element dl. The modified integral form of the 
governing equations (1) is then 

where 5 and r]  are the Cartesian components of the displacement velocity C. If 6 is equal to the 
fluid velocity V, equation (7) simply becomes the Lagrangian form integral equations. For the 
control volumes in the rotor region undergoing a collective rigid motion as in the present 
formulation, the integral form (7) can be replaced by the approximation 

dw 
dt 

A-+qw=O, 

where 

(9) 

In the fixed stator grid region, < and r]  are simply replaced by zero. 

quantity through the boundary surface is cell-averaged as 
For a quadrilateral-type finite volume, such as the one designated by ( i , j )  in Figure 2, a flux 

W 1 z = ( W i - I ,  j + W i ,  j ) P  
The governing equations can then be represented in the form 

1 +- qwi, j=o, 
dt i , j  A i , j  

y l  il 
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Figure 1.  The moving control volume Figure 2. Interior cell structure 
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where q is a numerical operator similar to the one given by Jameson et al.' This scheme 
corresponds to taking central differencing spacewise and is subjected to oscillations and over- 
shoots near the shock wave. To suppress these numerical anomalies, the artificial dissipation 
terms, dw, are often added to the governing equationsg*" as follows: 

dw 
dt 
-+pw=o, 

(13) 
1 
A 

pw=-(qw-dw). 

We now employ the classical fourth-order Runge-Kutta method for the time-stepping procedure: 

wo = w", 

w3 = wo - Atpw2, 

At 
6 

w4= wo-- (pw0+2pw'+2pw2+pw3), 

W"+l=z w4. (14) 

Boundary conditions 

The isolated cascade system in Figure 3, shown together with the computational grid, requires 
inlet, outlet, periodic and wall boundary conditions. At the inlet boundary of the cascade the total 
enthalpy, total pressure and flow direction are specified while the static pressure is extrapolated 
from the interior points. At the outlet the static pressure is specified by the back pressure and the 
other flow quantities such as the density and velocities u and u are again obtained by extrapola- 
tion from the interior. On the wall boundary we need only the static pressure. In the rotor region 
where the finite volumes are collectively moving with the blades, the zero-flux constraint, i.e. 
udy-udx=O, required for the fixed blade should be relaxed to the moving blade counter- 
part, (u - l )  dy - ( u  - r,~) dx = 0. The flux integral on the wall boundary then takes the formI2 

qwI,=CO, PAY, -PAX, P(5AY-&)lT. (15) 

Figure 3. Grid system for isolated cascade flow (H-mesh, 91 x 31) 
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Figure 4. Grid system for compressor stage flow (H-mesh, 156 x 31) 

Finally, the wall pressure can be extrapolated from the neighbouring cell by using the equation 

(4 + A ) P r  = ( x x x y  +yx Y Y  ) ~ x  + A y r  u - x Y  0) ( x x x  u - ~ x x  u), (16) 
where X and Y represent the local orthogonal streamline co-ordinates. For the rotor blades the 
same equation can be used by replacing the absolute velocity components u and u by the velocity 
relative to the moving blades. 

For the stator-rotor stage flow analysis the assumption is made here on the cascade configura- 
tion that two rows of blades have the same pitch as exemplified in Figure 4. On the sliding surface 
(S-S') between the fixed and the moving grid system we used a simple interpolation procedure at 
each time step. In the present study the two-sliding-grid system worked beautifully since the 
adjoining boundary (S-S') was situated in the region where the flow properties had no major 
gradient. 

Application 

An elliptic grid generator devised by Steger and Sorenson13 was used here to produce the grids 
shown in Figures 3 and 4. Figure 3 consists of an isolated row of blades of 5% semicircular arc 
aerofoils with 30" stagger angle and unit solidity. We used a 91 x 31 H-mesh system with 51 grid 
points assigned to the blade. Figure 4 shows the stator-rotor compressor stage with a 156 x 31 
H-mesh system. The stator and rotor blades are both NACA 65410 aerofoils with 30" stagger 
angle and unit solidity; the stator-rotor gap is 20% of the blade chord length. 

RESULTS AND DISCUSSION 

The present moving grid formulation was first tested for accuracy on an isolated cascade of 
blades. The pressure contour in the stator passage flow obtained by the fixed grid finite volume 
method is shown in Figure 5 for an inlet Mach number 09713 and inlet flow angle 37.5". Figure 6 
shows the result of an equivalent dynamic blade simulation performed with the moving grid finite 
volume method. It consists of the same aerofoils with zero inlet flow angle, inlet Mach number 
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Figure 5. Pressure contour by fixed grid finite volume method, A(p/p,,)=O.OS 

Figure 6. Pressure contour by moving grid finite volume method, A(p/p,)=OOS 
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07706 and non-dimensional blade speed - 0.6724 in the y-direction. The identical pressure 
contours in the two different approaches demonstrate that the present moving grid finite volume 
method is as accurate as the fixed grid counterpart. The total wall pressure loss along the blade is 
plotted in Figure 7 for the two methods. Generally good agreement is obtained in terms of shock 
wave strength and location. A minor difference in the oscillation pattern is, however, found in the 
curve of the total pressure loss upstream of the shock, which evidently does not alter the overall 
features of the computed flow physics. 

The stator-rotor compressor stage flow is now analysed for a stator inlet Mach number 08325, 
stator inlet flow angle 37.5" and non-dimensional vertical rotor blade speed 0.88. The transient 
behaviour of the force components converging towards the periodic flow is shown in Figure 8. It 
is seen that, starting from the initial pseudo-steady solution which had been obtained without the 
surface-sliding effect, approximately two and six cycles of revolution are required for the statot 
and rotor blades respectively before an apparent periodicity is attained in the axial and tangential 
force components. Rigorous analysis shows, however, that about 20 cycles are necessary before a 
purely periodic flow is assumed, which can be demonstrated by the closed phase diagrams in 
Figure 9. This is in contrast to the five cycles reported for the periodic supersonic stage flow.5 
Figures 8(a), 8(b) and 9(a) clearly indicate that the stator blade maintains near-harmonic axial and 
tangential forces owing to the cyclic disturbances radiated from the downstream rotors, which 
may be called 'potential interaction'. In contrast, the rotor blade experiences more complicated 
subharmonic fluctuations in a period of motion owing to 'inviscid wake-rotor interaction'; see 
Figures 8(c), 8(d) and 9(b). 

Figures lqa) and lqb) show the wall pressure distribution on the stator and rotor blade 
respectively at the moments of maximum and minimum tangential forces. The stator blade 
experiences a tangential force in the positive y-direction and the rotor blade in the negative y- 
direction (the direction of force is not shown in the figure). Figures 1 l(a), 1 l(b) and ll(c) represent 
the pressure contours after 0, and 3 cycle respectively. These figures together with Figure lqa)  
show that the flow properties in the stator flow passage are virtually unchanged ahead of the 
shock waves despite the cyclic upstream disturbances from the trailing rotor blades. In the 
neighbourhood of the leading edge of the dynamic rotor blades the pressure is high enough to 
cause a transient upstream influence on the stator blades. This upstream influence is propagated 
up to the shock position in the stator flow passage, about mid-chord of the stator blade on the 
pressure side and near the trailing edge of the aerofoil on the suction side. This inviscid potential 
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Figure 7. Total wall pressure loss, T , , = ( p / p , ) / ( p / p , ) y -  1: (a) fixed grid finite volume method; (b) moving grid finite 
volume method 



-6 T 

-13 

Figure 8. Transient blade force components: (a) stator axial force; (b) stator tangential force; (c) rotor axial force; (d) rotor 
tangential force 
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Figure 9. Phase relation of blade forces-point A is at 0, B at i, C at and D at 3 cycle: (a) stator; (b) rotor 
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stator-rotor interaction has caused the difference between the maximum and minimum wall 
pressure curves. The inviscid stator wake-rotor interaction, however, turned out to be relatively 
small in magnitude, especially for the rotor part; see Figure Iqb). This would not be the case if the 
flow had been V~SCOUS.~  The unsteady subharmonic fluctuation of the force coefficients on the 
rotor is, however, believed to be due to this particular interaction. 
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Figure 10. Wall pressure curves at the instant of maximum (......) and minimum (-) tangential forces: (a)stator; 
(b) rotor 
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Figure 1 I(a) 
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Figure 11. Pressure contours at various cycle phases, A(p/p,)=O.O5: (a) at 0, (b) at 4 and (c) at 2 cycle 
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Figure 12. Instantaneous velocity vectors in compressor stage flow 

v 
Figure 13. Streaklines showing circumferential dispersion in rotor wake 
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Figure 12 depicts the instantaneous velocity vectors in the compressor stage flow. The flow 
accelerated on the suction side of the stator blade is quite slowed down by a sudden, nearly 
normal shock wave. At the exit the flow is pressurized to the level of the back pressure by the 
work transmitted from the rotor blades. The rotational flow passed through the stator passage is 
intercepted by the rotor blades as shown in Figure 13 by the streaklines. The different degree of 
flow acceleration between the suction side and the pressure side of the moving rotor blade causes 
the circumferential flow dispersion in the wake of the rotor blades. This phenomenon, occurring 
always in the compressor stage flow, depends on the blade configuration, blade loading and 
aerodynamic force  coefficient^.'^ The viscous effect in a real fluid flow would, however, introduce 
flow separation and a mixing mechanism of the turbulent diffusion, thus altering the scene of the 
compressor passage flow further. 

CONCLUSIONS 

A generalized finite volume method treating the stator and rotor regions with similar formula- 
tions is presented to solve the Euler equations for transonic compressor stage flow. The adjoining 
of the present moving grid finite volume method with the existing fixed grid counterpart by 
interpolative data exchange at the sliding surface has worked quite efficiently. The calculated 
results have explained the mechanism of potential interaction between the stator and rotor blades 
and the inviscid wake-rotor interaction. It is also indicated that some of the above results would 
be altered in a more complicated way if the viscous effect of a real fluid were to be taken into 
account. 
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